Ir al contenido principal

Razones de Cambio

 RAZONES DE CAMBIO

Razón de cambio o tasa de cambio (de una variable respecto a otra) es la magnitud que establece el cambio de una variable por unidad de cambio de la otra. Si las variables no tienen ninguna dependencia entre sí la tasa de cambio es cero.

De la definición de derivada: 

se deduce que la misma implica el análisis de la variación de una variable dependiente y respecto a una variable independiente x,

Por tanto la derivada de una función permite establecer la razón de cambio entre dos variables.

En la mayoría de problemas de aplicación de ingeniería en todas sus ramas y subdivisiones se requiere derivar las funciones con respecto al tiempo. A un problema en que intervengan razones de cambio, respecto al tiempo, de variables relacionadas, se le llama problema de rapideces de variación relacionadas, las variables tienen una relación específica para valores de t. Esta relación suele expresarse en forma de una ecuación, con frecuencia, los valores de las variables y sus velocidades de cambio con respecto a t se expresan en un instante dado ya que ellas cambian a cada momento.

 Ejemplo 1: Una persona de 1.80 metros de altura se aleja de un poste de alumbrado de 6 metros de altura con una velocidad de 1 m/s. ¿Con qué rapidez crece la sombra de la persona?



Ejemplo 2: Se inyecta aire a un globo esférico a razón de 20 pies cúbicos / min. ¿A qué razón varía el radio cuando éste mide 3 pies?

No olvides visitar nuestras redes sociales para más información: 

Comentarios

Entradas más populares de este blog

Geometría

  Imagina un universo donde todo sucede en una superficie perfectamente lisa e infinita: ese es el plano que exploramos en esta rama de la geometría. Aquí, nuestros protagonistas son las figuras bidimensionales , esas que tienen solo dos dimensiones: largo y ancho . Definamos los elementos fundamentales : El punto , la unidad más básica, una posición sin dimensión. La línea , una sucesión infinita de puntos que se extiende en una dirección. Una línea recta es el camino más corto entre dos puntos, mientras que una línea curva cambia de dirección continuamente. El plano , esa superficie lisa e infinita que contiene puntos y líneas. A partir de estos elementos, construimos ángulos , formados por dos semirrectas que comparten un punto final llamado vértice. Los ángulos se miden en grados y los clasificamos según su amplitud (agudo, recto, obtuso, llano, completo). Luego, nos adentramos en el estudio de los polígonos , figuras cerradas formadas por segmentos de línea recta ll...

Geometría - Conceptos

  Términos indefinidos En Geometría existen ciertos términos que no están definidos como lo son: punto, recta y plano. Al usar un término indefinido ( conceptos primitivos ), se está suponiendo que la palabra es tan elemental que es universalmente conocido su significado al no existir palabras más sencillas para definirlo. ·          Punto: Euclides definió el punto como el elemento geométrico que tiene posición pero caree de dimensiones. Los puntos geométricos se representan gráficamente por medio de una marca y se los denomina empleando una letra mayúscula junto a la misma. . A    x B ·      Plano: es un elemento geométrico que tiene dos dimensiones, longitud y ancho. Una hoja de papel infinita en sus dimensiones y sin espesor es el ejemplo típico para tener la idea de lo que es un plano. Se lo representa como una figura cualquiera y se lo denomina con una letra mayúscula colocada en el interior de su repres...

Conjuntos

  Definición de Conjunto Un conjunto es una colección de objetos de cualquier naturaleza con características bien definidas. A los objetos que forman parte del conjunto se les llama elementos. Por ejemplo: el conjunto de los meses del calendario Maya, el conjunto de los habitantes de la quinta Luna de Saturno, el conjunto de los números reales, el conjunto de valores que se pueden obtener al lanzar un dado, entre otros. Notación Un conjunto usualmente se denota con letras mayúsculas A, B, C, etc., y el elemento por letras minúsculas. Ejemplos: 1.     Conjunto de los satélites naturales de la Tierra: A = {Luna] 2.     Conjunto de enteros positivos pares menores que 10 y mayores que cero: B = {2, 4, 6, 8} Caracterización o determinación de un Conjunto Existen dos caminos para determinar un conjunto Por extensión: consiste en enunciar todos y cada uno de los elementos que forman parte del conjunto. Ejemplo: A = {Luna} B = {2,4,6,8} ...