Ir al contenido principal

Geometria - Conceptos

 Términos indefinidos

En Geometría existen ciertos términos que no están definidos como lo son: punto, recta y plano. Al usar un término indefinido, se está suponiendo que la palabra es tan elemental que es universalmente conocido su significado al no existir palabras más sencillas para definirlo.

·         Punto: Euclides definió el punto como el elemento geométrico que tiene posición pero caree de dimensiones. Los puntos geométricos se representan gráficamente por medio de una marca y se los denomina empleando una letra mayúscula junto a la misma.

. A    x B

·     Plano: es un elemento geométrico que tiene dos dimensiones, longitud y ancho. Una hoja de papel infinita en sus dimensiones y sin espesor es el ejemplo típico para tener la idea de lo que es un plano. Se lo representa como una figura cualquiera y se lo denomina con una letra mayúscula colocada en el interior de su representación.

 ·        Recta: es un conjunto sucesivo de puntos (mínimo 2) que carece de espesor y ancho. En una recta se pueden marcar infinitos puntos, además es subconjunto de un plano. Se la nombra por medio de dos letras mayúsculas que representan a dos puntos cualesquiera de la recta.


Distancia entre dos puntos

Corresponde al valor absoluto de la diferencia de sus coordenadas


Ejemplo: 

Proposición

Es una expresión verbal o escrita en la cual se afirma o niega algo. Las proposiciones más comunes son: axiomas, postulados, teoremas y corolarios.

Axiomas

Son proposiciones que al ser evidentes no requieres ser demostrados.

·         Axioma de identidad:   a = a

·         Propiedad simétrica de la igualdad:  si a = b entonces b = a

·         Propiedad transitiva de la igualdad: si a = b y b = c entonces a = c

·         A los miembros de una igualdad se los puede sumar, restar, multiplicar, dividir, elevar a la misma potencia o extraer una raíz manteniendo la igualdad.

·         El todo es mayor que cualquiera de sus partes e igual a la suma de éstas.

·         ·         Si a los dos miembros de una desigualdad se multiplican por números positivos iguales entonces el sentido de la desigualdad se mantiene.

·         Si se multiplican los dos miembros de una desigualdad por un número negativo, el sentido de la desigualdad cambia.

·         Si se suman desigualdades del mismo sentido se obtiene una desigualdad en el mismo sentido.

·         Si dos miembros de una desigualdad se restan de los dos miembros de una igualdad, el resultado es una desigualdad de sentido contrario a la dada.

 Postulados

Son proposiciones cuya veracidad a pesar de no tener la evidencia de un axioma, puede ser aceptada sin demostración.

·         Por dos puntos distintos solo pasa una recta.

·         Una recta es un conjunto ordenado de puntos.

·         Toda recta puede prolongarse indefinidamente en los dos sentidos.

·         La distancia entre dos puntos es la longitud del segmento que los une.

·         Por tres puntos dados no colineales pasa un plano y solo uno.

·         Si dos puntos pertenecen a un plano, entonces la recta que los une también pertenece al plano.

·         Se puede trazar un círculo con centro y radio conocidos.

·         Toda figura puede cambiar de posición sin alterar su forma y tamaño.

Teoremas

Son proposiciones cuya verdad necesita ser demostrada. Un teorema se compone de hipótesis que son sus condiciones o datos y tesis que es la propiedad a demostrarse.

Existen ciertas relaciones a considerar entre los teoremas según como se tome la hipótesis y la tesis:

·         Directa: es el enunciado del teorema original.

·         Recíproca: es la proposición que tiene por hipótesis  y tesis la tesis y la hipótesis de la proposición directa.

·         Contraria: es la proposición que tiene por hipótesis y tesis las negaciones respectivas de la hipótesis y tesis de la proposición directa.

·         Contrarecíproca: es la proposición contraria a la recíproca de la directa.

Ejemplo:

Directa: si dos ángulos son opuestos por el vértice entonces son congruentes.

Recíproca: si dos ángulos son congruentes entonces son opuestos por el vértice.

Contraria: si dos ángulos no son opuestos por el vértice, entonces no son congruentes.

Contrarecíproca: si dos ángulos no son congruentes, entonces no son opuestos por el vértice.

 Colorarios

Son proposiciones consecuencia directa de un teorema ya demostrado, por lo cual no hace falta su demostración.

Problema

Es una situación que se plantea para ser resuelta.

Congruencia

Dos figuras son congruentes si tienen la misma forma y medida. 

Igualdad

Dos figuras son iguales si tienen igual medida y no necesariamente la misma forma

Las dos figuras a pesar de ser diferentes en su forma pueden ser iguales en su perímetro o área.

Semejanza

Dos figuras son semejantes si sus ángulos son respectivamente congruentes y sus lados respectivamente proporcionales.

Identidad



Se tiene una identidad al referirse  una misma figura geométrica aun cuando su denominación parezca diferente.

Demostración

Es un conjunto de razonamientos por medio de los cuales se busca llegar a una conclusión o tesis a partir de premisas o hipótesis. 




Comentarios

Entradas más populares de este blog

Análisis Dimensional

El análisis dimensional es una parte fundamental de la física que estudia cómo se relacionan las magnitudes fundamentales con las derivadas. Su objetivo principal es expresar las magnitudes derivadas en función de las fundamentales y verificar la veracidad de las fórmulas físicas. En el análisis dimensional, se estudian las dimensiones y la homogeneidad de las ecuaciones físicas. Las dimensiones de una cantidad física expresan su dependencia de las cantidades base como un producto de símbolos (o potencias de símbolos) que representan las cantidades base. Por ejemplo, la dimensión de una medida de longitud se expresa como L, la dimensión de una medida de masa se expresa como M, y la dimensión de una medida de tiempo se expresa como T. Si deseas obtener más información sobre el análisis dimensional en la física, te recomiendo que consultes los siguientes recursos: Ejercicio # 1 Solución Ejercicio #1 Ejercicio # 2 Aquí te presentamos en el siguiente enlace un ejemplo: clic para descargar

Contabilidad

La contabilidad es una disciplina que se encarga de organizar y analizar los registros de operaciones comerciales realizados por una institución o particular con el fin de facilitar la toma de decisiones en el campo económico. La contabilidad evalúa, describe y cuantifica el estatus económico de una empresa o individuo a través del análisis de sus respectivas operaciones económicas previamente registradas y archivadas. Su objetivo principal es presentar la información financiera de una empresa de manera organizada para facilitar la toma de decisiones administrativas y gestionar eficientemente los recursos económicos disponibles. La contabilidad es ampliamente utilizada en prácticamente todos los sectores que rigen a la sociedad moderna. Aunque existen especialistas llamados “tenedores de libro” que realizan las labores más básicas de un contador, muchas empresas, tanto públicas como privadas, contratan a profesionales egresados en los correspondientes cinco años académicos de la licen

Estudio de conexiones entre elementos estructurales de caña guadua sometidos a carga axial

  En el presente proyecto de titulación se realiza un estudio experimental acerca de conexiones entre elementos rollizos de caña guadua angustifolia Kunth, material natural de múltiples beneficios ecológicos que puede brindar alternativas nuevas para sistemas de construcción, principalmente en áreas de interés social. Previo a la descripción de los ensayos y su ejecución se plantea una investigación acerca del bambú y particularmente del género guadua, de nombre científico Guadua Angustifolia Kunth (Bambusa Guadua Humboltd- Bonplant). Se detalla características tales como su clasificación taxonómica, periodos de crecimiento, morfología, métodos de preservación y propiedades físico-mecánicas las mismas que son de gran interés al momento de realizar un diseño estructural. Se presenta también datos acerca de la presencia de la caña guadua en el Ecuador y sus diferentes usos. Como información previa y que sirvió de base para la experimentación se da un resumen acerca de los tipos de conexi